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Abstract

This work presents a modification to the real adsorbed solution model using a Flory–Huggins type of expression that was reported previously.
This modification consists in replacing the Flory–Huggins activity coefficient by the spreading pressure dependent approach. This new model
takes into account explicitly the adsorbate–adsorbate interactions taking place in the adsorbed phase. It provides an excellent prediction of
the competitive, ternary adsorption equilibrium of benzyl alcohol, 2-phenylethanol and 2-methyl benzyl alcohol observed in a reversed-phase
liquid chromatographic system using information merely derived from the single-component adsorption experimental data.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Preparative chromatography is now widely used in the
pharmaceutical industry for the large-scale purification
and/or separation of drugs or drug intermediates. The devel-
opment of a new chromatographic method and particularly
its scale-up is a complex operation due to the number of
parameters involved, to the fact that the process is almost
always conducted under nonlinear conditions, and that the
optimization of nonlinear processes is still a very difficult
task[1].

Mathematical models for nonlinear chromatography com-
bined with the proper model of adsorption isotherm allow
the accurate prediction of elution band profiles under a wide
range of operating conditions, hence the optimization of
the separation process. The knowledge of the adsorption
isotherm is an important prerequisite for any reliable pre-
dictive calculation of a chromatographic process. There are
many reports discussing single-component adsorption. Few
such reports deal with binary adsorption because the experi-
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mental determination of competitive adsorption equilibrium
data is a difficult, time consuming, and costly task[1–6].

The few sets of experimental data available have been
used to develop and validate predictive models of multi-
component adsorption isotherms. These models attempt
to estimate competitive adsorption equilibria using only
parameters that can be derived from single-component
isotherms[7,8]. Different models of this type have been
used to correlate single-component adsorption data and
to predict binary equilibria, for instance the models of
Langmuir [9], Le Van and Vermeulen[10], Fowler and
Guggenheim[11], Moreau et al.[12], Ruthven[7], Kiselev
[13], Langmuir–Freundlich[14], Jovanovic–Freundlich[8],
Fowler–Guggenheim/Langmuir–Freundlich (FGLF)[15],
Fowler–Guggenheim–Jovanovich–Freundlich (FGJF)[8] as
well as various models derived from the adsorbed solution
theory (AST) and based on different assumptions[16]. In
almost all cases, the results obtained are not completely
satisfactory.

Very few chemists have ever studied the competitive ad-
sorption of ternary mixtures and, among them, Quiñones
et al. [17] were the first to report on the determination
of actual ternary adsorption data in a chromatographic
system (benzyl alcohol, 2-methyl benzyl alcohol and
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2-phenylethanol on C18-silica with aqueous solutions of
methanol) and to attempt a prediction of the ternary adsorp-
tion isotherms of such mixtures from the parameters of the
corresponding single-component isotherms[17]. In their
work, they used frontal analysis for the determination of the
adsorption data which they modeled using the real adsorbed
solution theory (RAST) and applying the Flory–Huggins
activity coefficient equation[18] to account for the non-
ideal behavior of the compounds in the adsorbed phase.
The Flory–Huggins activity equation takes into account the
size difference of the molecules[19]. The model derived by
Quiñones et al.[17] provides a good prediction of the ternary
equilibrium studied, using only numerical parameters de-
rived from the analysis of the three sets of single-component
adsorption data. Earlier, Minka and Meyers[20] had de-
termined the excess isotherms of benzene, ethyl acetate
and cyclohexane on activated carbon, using a batch method
and measuring the solute concentrations before and af-
ter immersion of the adsorbent in known solutions. Later,
Lisec et al. [21] measured the ternary isotherms of phe-
nol, 2-phenylethanol, and 3-phenyl-1-propanol on a similar
C18-silica column with a 1:1 mixture of water and methanol
and found that a ternary Langmuir model approximately ac-
counts for the adsorption behavior of this system. Recently,
Siperstein and Myers[22] reported competitive adsorption
data for mixtures of CO2, C2H4, and C2H6 on zeolites.

In this paper, we describe the results obtained when using
an alternative approach, the spreading pressure dependent
(SPD) activity-coefficient equation[23,24], in order to ac-
count for the nonideal behavior of the adsorbate, using the
same RAST model as the one derived by Quiñones et al.[17]
This new model, which accounts for the lateral interactions
between the adsorbed components, has a better predictive
capability for the ternary mixture studied.

2. Theory

Myers and Praustnitz[16] developed the ideal adsorbed
solution theory (IAST) in 1965, for gas–solid systems. This
same concept was later extended to liquid–solid adsorption
systems[25]. Generally, at low concentrations, the IAST
model gives an accurate prediction of the behavior of mul-
ticomponent equilibria, even in the case of the complex,
nonideal systems that describe the adsorption equilibrium of
some basic drugs[3]. However, from a theoretical point of
view, the applicability of IAST models is restricted to the
case of dilute solutions. This thermodynamical approach can
be extended to high concentrations systems by including the
corresponding activity coefficients into real adsorption so-
lution theory (RAST) models that apply when the adsorbed
phase exhibits significant deviations from ideal behavior
[26]. Other significant contributions to the thermodynamics
of multicomponent adsorption equilibrium include models
based on AST and that take into account the heterogeneity
of the adsorbent surface[27].

2.1. RAST model using a Flory–Huggins-type expression
(RAST-FH)

Recently, Quiñones et al.[17] proposed the following
RAST model:
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In this equation, the superscripts a and b stand for the ad-
sorbed and the liquid phase, respectively,ρb is the molar den-
sity of the liquid phase,ρb = Ci/xi, xi is the mole fraction
of compoundi, Ci is its molar concentration,θi = qi/n∞,
n∞ is the saturation capacity of the adsorbed layer,γb

i and
γa
i are the activity coefficients in the bulk liquid and in the

stationary phase, respectively,Ns is the number of solutes
in the system andKi is the Henry constant.

Eq. (1)allows the calculation of the mole fraction of solute
i in the adsorbed phase. The mole fraction of solute i in the
adsorbed phase is:

xa
i = θi = qi

n∞ (2)

The nonideal behavior of the solute in the liquid phase was
estimated using the UNIFAC method[28]. The nonideal
behavior of the adsorbate molecules in the adsorbed phase
was accounted for using a Flory–Huggins expression:
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whereαi andαj are model parameters andN is the total num-
ber of components, including the solvent. It was assumed
that, for the solvent present in the adsorbed phase,αs = 1.

Quiñones et al.[17] fitted the single component ex-
perimental adsorption data obtained for benzyl alcohol,
2-phenylethanol and 2-methyl benzyl alcohol on their
RP-18/water:methanol chromatographic system to their
nonideal model (Eq. (1)), using the Wilson model[29] to
account for the nonideal behavior in the adsorbed phase.
This model provided an excellent correlation of the single
component data. The Wilson model represents explicitly the
solute–solute interactions using binary parameters. It could
not be used for the predictive calculation of the multicom-
ponent equilibria due to the unavailability of the Wilson
parameters for solute–solute interactions.

2.2. RAST model using a SPD-type expression
(RAST-SPD)

For nonideal multicomponent systems, it is necessary to
find an expression of the activity coefficient that accounts
for the nonideal behavior of the adsorbed phase. In or-
der to evaluate expressions that allow an accurate predic-
tion of multicomponent equilibria, the spreading-pressure
dependent (SPD) activity coefficient model was selected.
The theory of the SPD model was adapted for the adsorbate
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phase and used by Talu and Zwiebel[23] in order to de-
scribe competitive gas adsorption. This model is known as
the SPD-nonideal adsorbed solution (SPD-NAS) model. Not
only does the SPD-NAS account for the combined effects
of the adsorbate–adsorbate interactions, it also allows us to
account empirically for the surface heterogeneity of the ad-
sorbent by lumping together these two effects into the single
adsorbed phase activity coefficient of each compound[24].
The model can be used in a predictive fashion for the calcu-
lation of multicomponent equilibria for gas–solid adsorption
systems[23,24]. As indicated earlier, the model explicitly
accounts for the lateral interactions between the adsorbed
components:

ln γi = −qi ln


 N∑

j=1

βjτji


 + qi − qi

N∑
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βjτij∑N
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with
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(5)

τij = exp

(
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2RT

)
(6)

In these equations,qi is a shape factor,Ei is the sin-
gle component lateral interaction potential, andEij is the
cross-lateral interaction potential,z is the coordination num-
ber. The summation is performed over all species, including
the solvent adsorbed on the stationary phase.

Usually, the dependence of the activity coefficients on
the spreading pressure is related to the lateral interaction
potential through the following equation[23]:

Ei =
Qst

jπ − Qst
j0

(1/2)zM
(7)

In this expression,Qst
jπ is the isosteric heat of adsorption of

the single componentj under the same spreading pressure
as the mixture,Qst

j0 is the limit isosteric heat of adsorption
at zero surface coverage, andM is the Avogadro number.

If the molecules have similar sizes and adsorptive prop-
erties, the cross-lateral interaction parameters can be calcu-
lated using the following mixture rule[30]:

Eij = (EiEj)
1/2 (8)

When there are appreciable differences between the proper-
ties (size and adsorption energy), of the molecules studied,
the right hand side ofEq. (8) should be modified using a
correction factorδij [30]:

Eij = (EiEj)
1/2(1 − δij ) (9)

The parametersδij are derived from the multicomponent ad-
sorption data. Therefore, the prediction of the behavior of
a ternary equilibrium could be made from the parameters
derived from the three corresponding sets of binary equilib-
rium data.

Replacing inEq. (6) the termzEi/2RT by a single-com-
ponent lateral interaction parameter,χi, and the term
zEij/2RTby a cross-lateral interaction parameter,χij, gives:

τij = exp(χi − χij ) (10)

The parametersχi andχij account for the molecular interac-
tions of componenti and for the cross-interactions between
componentsi and j, respectively. Note that the lateral in-
teraction potentials are included into the lateral interaction
parameters. Therefore, the dependency of the activity co-
efficient on the spreading pressure is taken into account in
these parameters.

The parameterχi can be obtained from the analysis of
single component data. An estimate of the cross-lateral inter-
action parameters can be derived from the geometric mean
of the single component parameters following the classical
mixture rule inEq. (8):

χij = χji = (χiχj)
0.5 (11)

The RAST-SPD model used in this study is defined by
the set of equations 1, 4, 5, 10 and 11. We assumed that
the shape factors of all components, including the solvent,
are 1. We also assumed that, in the system under study, the
most important interactions in the adsorbed phase are the
solute–solute interactions. Since the mole fractions of all
the solutes are less than 0.01, the solvent activity is close
to unity and will be assumed always to remain equal to
unity. The solute–solvent lateral interactions in the adsorbed
phase were neglected (i.e.,χis = χsi = 0) because the sol-
vent molecules are much smaller and have a much lower
polarizability than the solute molecules. The solutes (ben-
zyl alcohol, 2-phenylethanol and 2-methylbenzyl alcohol)
have all very nearly the same size, so it is reasonable to
assume that the saturation capacities are the same for all
three molecules and that they can fit as well in a lattice
site.

3. Experimental

The experimental data used in this study were reported
previously[17]. They report under tabular form the experi-
mental adsorption data for the three single-components, the
three possible binary, and the ternary mixtures of benzyl al-
cohol, 2-phenylethanol and 2-methyl benzyl alcohol, on a
3.9 mm × 150 mm Symmetry C18 (Waters, Milford, MA,
USA) bonded silica column with a methanol-water solution
(50:50, v/v) as the mobile phase, at 30◦C. These adsorption
data were measured at 1 ml/min by frontal analysis[1,14]
using an 1100 HP liquid chromatograph (Agilent Technolo-
gies, Palo Alto, CA, USA).

The models used are implicit with respect to the sur-
face coverage. The numerical inversion of each model with
respect to the adsorbed concentration was made using a
Gauss–Jacobi numerical method[31]. Regressions of the ex-
perimental data were performed using a corrected Newton
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method. When fitting the single-component data, the best
coefficients were obtained by minimizing the residual sum
of squares (RSS) combined for the three components:

RSS=
n∑

i=1

(qex,i − qt,i)
2 (12)

whereqex,i andqt,i are the experimental and calculated val-
ues for each data point, respectively.

We used a Fisher’s test to compare the Flory–Huggins and
the SPD-RAST models that have different numbers of pa-
rameters. The best model is the one that exhibits the highest
value of the following Fisher parameter[32]:

F = (n − l)
∑n

i=1(qex,i − q̄ex)
2

(n − 1)
∑n

i=1(qex,i − qt,j)2
(13)

where i is the total number of adjusted parameters of the
model andq̄ex is the mean value of the experimental ad-
sorbed phase concentration. As clearly seen inEq. (13),
everything else being equal,F decreases with increasing
number of parameters of the model tested. Thus, the com-
parison of the ability of two models to account for a set of,
e.g., adsorption data can be made on the basis of the values
of the correspondingF factors. The fact that the two mod-
els may have different numbers of adjustable parameters is
accounted for in the definition ofF.

Table 1
Fit of the single-component adsorption data and prediction of the ternary equilibrium data

Model Parameters RSSa single component RSS ternary system Global RSS F

RAST-FH
Reported by Quiñones et al.[17]

KBA = 2.015
KPE = 3.574
KMBA = 3.674 RSS(BA)= 25.21
αBA = 1.876 RSS(PE)= 17.19
αPE = 2.246 RSS(MBA)= 25.21
αMBA = 1.787

∑
RSS= 67.61

n∞ = 2.277

Recalculated in this work
KBA = 1.997
KPE = 3.648 RSS(BA)= 0.22 RSS(BA)= 28.84
KMBA = 3.659 RSS(PE)= 0.78 RSS(PE)= 28.58
αBA = 2.041 RSS(MBA)= 0.44 RSS(MBA)= 6.81 65.67 794.82
αPE = 2.550

∑
RSS= 1.44

∑
RSS= 64.23

αMBA = 2.042
n∞ = 3.078

RAST-SPD
χs = 0.557
χBA = 0.399 RSS(BA)= 0.23 RSS(BA)= 21.09
χPE = 14.637 RSS(PE)= 0.40 RSS(PE)= 22.49
χMBA = 0.403 RSS(MBA)= 0.38 RSS(MBA)= 17.24 61.83 838.21
KBA = 1.997

∑
RSS= 1.01

∑
RSS= 60.82

KPE = 3.533
KMBA = 3.658
n∞ = 5.532

a RSS: residual sum of squares.

4. Results and discussion

The experimental single-component adsorption data
were fitted to the RAST model (Eq. (1)), using either the
Flory–Huggins or the SPD activity coefficient equation to
account for the nonideal behavior in the adsorbed phase.
Using the parameters derived from these single-component
adsorption data, the ternary equilibrium was predicted.
Table 1summarizes the results obtained.

The numerical algorithm and the optimization routines
used in this work were different from those used by Quiñones
et al. [17]. This suffices to explain why the values obtained
for the parameters of the Flory–Huggins model obtained are
different from those reported previously by these authors
(seeTable 1). Note that, the sums of residuals calculated by
us are lower than those obtained in the previous study.

Both models give an excellent representation of the
single-component adsorption data. However, the correlation
of the single-component data using the RAST-SPD model
(RSS= 1.0078) is slightly better than the correlation ob-
tained using the RAST-FH model (RSS= 1.4467). The
prediction of the ternary adsorption equilibrium given by
the RAST-SPD model was better than that of the RAST-FH
model, as confirmed by the F-values presented inTable 1.
The RAST-SPD model predicts more accurately the adsorp-
tion behavior of BA and PE than the RAST-FH model. Con-
versely, however, the prediction of the adsorption behavior



J.E. Garcia-Galdo et al. / Journal of Chromatography A, 1024 (2004) 9–14 13

0

10

20

30

40

50

60

0 10 20 30 40 50 6

C total (g/L)

q
1(

g
/L

)

0

0

10
20

30

40

50
60

70

80

0 10 20 30 40 50 6

C total (g/L)

q
2 

(g
/L

)

0

0
10
20
30
40
50
60
70
80
90

0 10 20 30 40 50 60

C total (g/L)

q
3 

(g
/L

)

(A)

(B)

(C)

Fig. 1. Adsorption isotherms of BA (A), PE (B), and MBA (C). Symbols,
adsorption data determined by frontal analysis. These experimental data
are represented with the following symbols: data for single-component
(�); data for 1:1:1 mixtures (�); data for 3:1:1 mixtures (�); data for
1:3:1 mixtures ( ); data for 1:1:3 mixtures (�). The solid lines are the
adsorption isotherms calculated using the RAST-SPD model.

of MBA given by the RAST-FH model is the better one.
The graphs in Fig. 1 illustrate the excellent agreement be-
tween the experimental adsorption isotherm data and the
adsorption isotherms calculated using the new RAST-SPD
model.

The lateral interaction parameter is higher for PE (χPE)
than for BA and MBA. This result is unexpected if we con-
sider the important similarities in size and structure of the
three solutes studied. However, it is common that predictive
models lead to such apparent contradictions and that they ex-
hibit this kind of inconvenience [7,8]. Sometimes, the values
of parameters are in contradiction with the physical sense
given to them when they were previously defined in the con-
struction of the model. For example, the lateral interactions
parameters derived from the Fowler model are very dif-
ferent for homologous compounds such as 2-phenylethanol

and 3-phenylpropanol, even though, in this case, there were
no reasons to think that the adsorbate–adsorbate interac-
tions of these compounds should be very different [7]. It is
quite frequent that models that are widely applied, such as
the quadratic, the Jovanovic, the Langmuir–Freundlich, the
Jovanovic–Freundlich, the FGLF and the FGJF models give,
in some cases, questionable values for their different param-
eters [7,8,33]. This may be caused by the semi-empirical na-
ture of these models and also to the different simplifications
introduced during the derivation procedure of these models,
with the only aim of representing simply and satisfactorily
the system under study.

5. Conclusions

The RAST model was initially presented by Quiñones
et al. [17] in order to account for the adsorption behavior of
the components of a ternary system. We modified this model
by replacing the Flory–Huggins equation that these authors
had used with the SPD approach. This modification results
in a slightly better fit of their single-component experimental
data and predicts markedly better the adsorption behavior of
their ternary system than did their initial RAST model. The
advantage offered by our new model arises from the fact that
it takes into account the lateral interactions taking place in
the adsorbed phase.
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